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Abstract

Animal studies exploring the antagonism of irreversible cholinesterase inhibitors (i.e. nerve agents) such as soman and sarin have shown

that pretreatment with the reversible centrally acting cholinesterase inhibitor, physostigmine, alone or in conjunction with the centrally acting

anticholinergic drug, scopolamine, antagonizes the lethality and toxicity of these agents. This study evaluated the effects of pretreatment with

the oral cholinesterase inhibitor and anti-Alzheimer’s agent, donepezil (Aricept) on the hypokinetic, hypothermic and diarrhea-inducing

effects of the irreversible long-acting cholinesterase inhibitor, diisopropylfluorophosphate (DFP) in adult Sprague–Dawley rats. Donepezil (2

mg/kg), given acutely (30 min pretreatment) or chronically (10 daily treatments), significantly antagonized the hypothermia, hypoactivity and

diarrhea induced by DFP (1.25 mg/kg) administration. The effects were most prominent 4 and 6 h after the injection of DFP and some

protection was observed even when the last treatment of the chronic donepezil protocol was given 24 h before the DFP injection. Although

these phenomena are not the same as lethality, they may be parallel phenomena, and our results may have therapeutic implications for the

treatment of nerve agent toxicity.
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1. Introduction

Organophosphorus cholinesterase inhibitors (i.e. diiso-

propyl fluorophosphate [DFP], sarin, soman, VX) induce

toxicity by inhibiting acetylcholinesterase (AChE), the

primary enzyme which metabolizes acetylcholine (ACh) in

the central nervous system and in smooth and skeletal

muscle. Increases in ACh lead to enhanced central and

peripheral muscarinic and nicotinic receptor stimulation,

with subsequent effects on NMDA and perturbations of

other neuroactive chemicals (Taylor, 1996). Cholinergic

toxicity consists of lethargy, lassitude, salivation, vomiting,

weakness, nausea, bronchoconstriction, muscle paralysis,
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respiratory paralysis, diarrhea, hypotension, hypertension,

bradycardia and death (Taylor, 1996; Heath, 1961).

Pharmacological treatment of AChE inhibitor toxicity

conventionally consists of administration of the anticholi-

nergic (i.e. antimuscarinic) agent, atropine sulfate, and the

administration of cholinesterase reactivators such as prali-

doxime (Taylor, 1996; Heath, 1961; Volans, 1996). How-

ever, several preclinical studies indicate that central

mechanisms are involved in AChE inhibitor-induced tox-

icity and mortality. Centrally acting anticholinergic agents

such as scopolamine, benztropine, trihexyphenidyl, and

aprophen have been shown to be more effective than less

centrally acting atropine or methscopolamine in preventing

AChE inhibitor-induced toxic effects (Anderson et al., 1994;

Janowsky, 2002; Janowsky et al., 1985, 1986, 1987;

Lallement et al., 2001; Leadbeater et al., 1985). Also, one

study in man indicates that scopolamine is more effective
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than atropine and the non-centrally acting anticholinergic

agent methscopolamine in preventing centrally mediated

cardiovascular, neuroendocrine and behavioral effects of the

reversible cholinesterase inhibitor, physostigmine (Janow-

sky et al., 1986).

Another strategy used to treat AChE inhibitor toxicity,

such as occurs with nerve agents, has been to pretreat with

relatively low, non-lethal doses of reversible cholinesterase

inhibitors. These agents transiently bind to the AChE

molecule and block subsequent binding of long lasting,

irreversible AChE inhibitors such as soman, sarin and VX.

Previously, enthusiasm existed for prophylactic pretreatment

with pyridostigmine, a reversible, peripherally acting oral

AChE inhibitor. Pyridostigmine was considered to have

some protective effects against organophosphate nerve

agents (Dirnhuber et al., 1979; French et al., 1979; Walday

et al., 1993; Xia et al., 1981). Because of this, many

participants in the Persian Gulf War were given pyridos-

tigmine (Keeler et al., 1991). However, pyridostigmine does

not appear to effectively antagonize AChE inhibitor toxicity

(Leadbeater et al., 1985; Miller et al., 1993), and indeed,

there is some evidence that the toxic effects of irreversible

AChE inhibitors are potentiated by pretreatment with

pyridostigmine (Overstreet et al., 1998a,b; Lallement et

al., 2001).

Pretreatment with subchronic administration of the

reversible, short acting centrally active AChE inhibitor

physostigmine in guinea pigs and other rodents has proved

promising (Anderson et al., 1991; Harris et al., 1991; Lim

et al., 1988, 1991; Meshulam et al., 1995; Miller et al.,

1993). This is true especially when this pretreatment is

given with a centrally acting antimuscarinic receptor

blocking agent such as trihexyphenidyl or scopolamine

(Lim et al., 1988; Meshulam et al., 1995; Philippens et al.,

2000). Thus, pretreatment with physostigmine plus scopol-

amine or physostigmine plus trihexyphenidyl (Artane) led

to complete survival, devoid of convulsions or loss of

consciousness in non-human primates in whom soman

doses would otherwise have been lethal (von Bredow et

al., 1991). Furthermore, centrally active physostigmine was

found more effective than non-centrally acting pyridostig-

mine in protecting against soman and sarin effects

(Leadbeater et al., 1985; Miller et al., 1993) and other

organophosphate effects as well (Deshponde et al., 1986;

Solana et al., 1990).

Even though centrally active physostigmine appears to

be an effective pretreatment for AChE inhibitor toxicity in

animals, there are several drawbacks to its use. Physostig-

mine has a short half-life. If it is to be given as a treatment

for Alzheimer’s disease instead of a prophylactic for nerve

agent toxicity, it must be given frequently and in relatively

high oral doses (or transdermally or as an ongoing infusion)

to maintain adequate blood levels to be an effective

treatment. Physostigmine, furthermore, has relatively severe

side effects, including nausea, vomiting and diarrhea

(Coelho and Birks, 2001).
Over the past decade, several reversible, relatively long

acting, orally administered, centrally acting AChE inhibitor

agents have been marketed to alleviate the symptoms of

Alzheimer’s disease (e.g. Wolfson et al., 2002). These

AChE inhibitors include donepezil, rivastigmine and metri-

fonate (Clegg et al., 2002; Inglis, 2002; Morris et al., 1998;

Rosler, 2002; Wolfson et al., 2002). Despite their relative

success in delaying the progression of Alzheimer’s disease,

these agents have only recently been considered as potential

treatments for nerve agent exposure (Janowsky et al., 2004).

In our initial study we showed that acutely administered

donepezil, alone or in combination with scopolamine, was

able to counteract the hypothermic, hypokinetic and diar-

rhea-inducing effects of the irreversible anticholinesterase,

DFP (a prototypic nerve agent) in hypercholinergic Flinders

Sensitive Line rats (Janowsky et al., 2004). The addition of

scopolamine was necessary to counteract the initial transient

(1 h) hypothermic effects of donepezil itself. In the current

study, we tested whether chronic treatment (10-day) with

donepezil might block the effects of a subsequently

administered toxic dose of DFP in standard Sprague–

Dawley rats without causing significant side effects requiring

the co-administration of scopolamine. The objective was to

confirm that the principle of protection afforded by drugs

used to treat Alzheimer’s disease against DFP toxicity could

be applied to normal rats and the findings, therefore, would

be relevant to normal humans, not just a subgroup who are

more sensitive to cholinergic agents, such as depressed

individuals (Janowsky et al., 1994).
2. Materials and methods

2.1. Animals

In this experiment, male Sprague–Dawley (SD) rats

(Charles-River, Raleigh, NC) were obtained at 70 days of

age (300 g) and allowed to adapt to the local conditions

before the experiment began 7–10 days later. The rats were

housed in groups of 3 in polycarbonate cages under standard

housing conditions (22 -C, 50% humidity) and a 12:12

light/dark cycle (lights on from 0700 to 1900). The

experiments reported in this study were approved by the

UNC Institutional Animal Care and Use Committee and

were carried out according to the NIH Guide for the Care

and Use of Laboratory Animals (NRC, 1996).

2.2. Drugs

DFP was obtained from Sigma Corporation (St. Louis,

MO). It was dissolved in peanut oil at a concentration of

1.0 mg/ml and injected intramuscularly at a dose of 1.25

mg/kg. Donepezil (5.0 mg) tablets were obtained and

were crushed and suspended in isotonic saline at a

concentration of 2 mg/ml. Donepezil was injected IP at a

dose of 2.0 mg/kg.
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Fig. 1. Changes in temperature induced by DFP following pretreatment with

acute donepezil or vehicle. Rats were pretreated with vehicle, and/or

donepezil (2 mg/kg) 30 min prior to being treated with vehicle or DFP.

Temperatures were then recorded 1, 2, 4, and 6 h later and related to

previously recorded baselines. The values represent the meanTS.E.M.

change in temperature (-C) for 6–8 rats. Group codes: VV=vehicle–

vehicle; DV=donepezil–vehicle; VF=vehicle–DFP; DF=donepezil–DFP.
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2.3. Design

2.3.1. Experiment 1: acute donepezil study

Four experimental groups consisting of 6 to 8 rats each

were established. Each rat was pretreated with donepezil (2

mg/kg) i.p. or saline vehicle and 30 min later each was

injected i.m. with DFP (1.25 mg/kg) or peanut oil vehicle.

Thus the four treatment groups were vehicle–vehicle (VV),

vehicle–DFP (VF), donepezil–vehicle (DV) or donepezil–

DFP (DF).

2.3.2. Experiment 2: chronic donepezil study

Five experimental groups consisting of 6 to 8 rats each

were used. Each rat received a pretreatment regimen (10

consecutive days) of i.p. injections followed by an acute

i.m. injection of DFP or DFP vehicle (peanut oil).

Experimental groups were: (1) vehicle (i.e. saline) injec-

tions for 10 days followed by acute vehicle injection (VV);

(2) 2.0 mg/kg donepezil injections for 10 days followed by

acute vehicle injection (DV); (3) vehicle injections for 10

days followed by acute 1.25 mg/kg DFP injection (VF),

(4) 2.0 mg/kg donepezil injections for 10 days followed by

acute 1.25 mg/kg DFP injection (DF), (5) 2.0 mg/kg

donepezil injections for 10 days followed by acute vehicle

injection followed by acute 1.25 mg/kg DFP injection one

day (24 h) later on Day 11 (DVF). This latter group was

included to determine if the protective effects of chronic

donepezil treatment could still be observed 24 h after the

last donepezil injection.

2.4. Procedure

Baseline temperatures were recorded prior to any treat-

ments using a thermistor probe connected to a telether-

mometer (Physiotemp, Clifton, NJ). For the acute donepezil

study temperatures were recorded again at 1, 2, 4, and 6 h

after the injection of DFP or DFP vehicle. The presence or

absence of diarrhea was noted at each recording of temper-

ature. Measurement of activity was obtained by placing the

rats in the center of an open field apparatus (60�60 cm)

and recording lines crossed in 1 min at 4 h after the injection

of DFP or its vehicle.

For the chronic donepezil study, the rats were injected i.p.

daily according to the above pretreatment design. Temper-

atures were taken 60 min after the 1st, 4th, and 7th donepezil

or vehicle injections to determine whether tolerance might

have developed to the hypothermic effects of donepezil.

After the 10th injection, rats were given either vehicle or

DFP either 30 min (first four groups) or 24 h (DVF group)

later. Temperatures were taken by rectal thermistor probe at

1, 2, 4 and 6 h following DFP or DFP vehicle injection and

the presence/absence of diarrhea was noted at each record-

ing. Approximately 5 min after the 4-h post-DFP recording

of temperature, the rats were placed in an open field

apparatus (60 cm�60 cm having 16 squares [10 cm�10

cm]) and line crossings were recorded for 1 min.
2.5. Statistical analysis

The temperature data (decrease in -C) were initially

subjected to a two-way mixed ANOVA, with treatment as

the independent factor and time as the related factor. When

this analysis revealed a significant interaction between

treatment and time, subsequent one-way ANOVAs of the

treatment effects were carried out at each time point. When

significant ANOVAs were found, subsequent Tukey’s

protected t tests were carried out to determine which pairs

of groups differed. A one-way ANOVA and follow-up

Tukey’s tests were also conducted to determine the effects

of the treatments on locomotor activity at the 4-h time point.

The incidence of diarrhea at the 4-h time point was analyzed

by Fisher exact probability tests.
3. Results

3.1. Acute donepezil study

Acutely administered donepezil was able to counteract

the hypothermia induced by DFP, with the most dramatic

results being seen at 6 h, as illustrated in Fig. 1. The vehicle/

vehicle (V/V), donepezil/vehicle (DV), and donepezil/DFP

(DF) groups all showed minimal changes from baseline

temperature (from 0.1 to 0.2 -C) at 6 h, while the vehicle/

DFP (VF) group exhibited a mean decrease of 2.0+0.5 -C
(Fig. 1). However, as reported earlier (Janowsky et al.,

2004), acute donepezil administration had hypothermic

effects of its own. The decreases in temperature shown by

the vehicle-treated groups at 1 h was significantly less than

those exhibited by the donepezil-treated groups (Fig. 1).
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Fig. 3. Effects of chronic donepezil pretreatment on hypoactivity induced

by acute DFP. Rats were treated according to the schedule given in Fig. 1.

At 4 h after the injection of DFP or vehicle, the rats were placed in an open

field arena for 1 min and line crosses were counted. Data represent the

meansTS.E.M. for 6–8 rats. *Significantly different from VV group

according to Tukey’s test.
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Thus, the two-way ANOVA of the temperature effects over

time revealed a significant group effect (F[3,26]=10.27,

p <0.001) and a significant group� time interaction effect

(F[9,96]=15.74, p<0.00001), but not a significant time

effect (F[3,96]=2.28, p>0.05).

The incidence of diarrhea also varied with group and

time. For example, the two donepezil-treated groups had the

highest incidence of diarrhea at 1 h (5/7 for donepezil/

vehicle and 8/8 for donepezil/DFP versus 0/7 for vehicle/

vehicle and 2/8 for vehicle/DFP). In contrast, the vehicle/

DFP group had the highest incidence of diarrhea at 4 h after

the injection (7/8) and those of the other groups were

significantly lower (0/8 for vehicle/vehicle, 1/7 for donepe-

zil/vehicle, and 4/8 for donepezil/DFP). Thus, donepezil has

substantial effects on diarrhea itself early on and seems

somewhat protective against the diarrhea-inducing effects of

DFP later on.

The vehicle/DFP group was the least active behaviorally

4 h after the injections, crossing only 10.4T2.2 lines. All of

the other groups were equally more active (20.5T2.8 for

vehicle/vehicle, 19.9 T2.0 for donepezil/vehicle, and

18.2T1.6 for donepezil/DFP) and the ANOVA confirmed

significant group differences (F[3,26]=5.03, p <0.01).

3.2. Chronic donepezil study

There was a significant decrease in temperature after

acute treatment with donepezil (Day 1: 1.41T0.20 -C versus

0.41T0.07 -C for the vehicle-treated group (t =4.49,

p <T0.001), but not after chronic treatment (Day 4:

0.53+0.08 -C versus 0.68+0.09 -C; t=1.17, NS; Day 7:

0.31+0.08 -C versus 0.29+0.1 -C; t=0.15, NS). Thus,
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Fig. 2. Changes in temperature induced by DFP following pretreatment

with chronic donepezil or vehicle. Rats were pretreated with vehicle, and/or

donepezil (2 mg/kg) for 10 days 30 min or 24 h prior to being treated with

vehicle or DFP. Temperatures were then recorded 1, 2, 4, and 6 h later and

related to previously recorded baselines. The values represent the meanT
S.E.M. change in temperature (-C) for 6–8 rats. Group codes: VV=ve-

hicle–vehicle; DV=donepezil –vehicle; DF=donepezil –DFP; VF=ve-

hicle–DFP; DVF=donepezil–vehicle–DFP.
tolerance rapidly developed to the hypothermic effects of

donepezil.

Fig. 2 illustrates the effects of 10 days of pretreatment

with donepezil on the hypothermic effects of DFP. The

differences among the groups vary depending upon the time

course. Thus, although there was a highly significant

treatment effect (F[4,40] =137.29, p <0.0001), and a

marginally significant time effect ( F[3,120] = 2.64,

p =0.05), there was also a significant treatment� time

interaction ( F[12,120] = 3.08, p < 0.01). Importantly,

chronic donepezil pretreatment protected against the hypo-

thermic effects of DFP seen at the later time points (Fig. 2).

This protective effect was confirmed in the measures of

locomotor activity (Fig. 3; F[3,23]=3.99, p <0.02). Only

the vehicle/DFP group had significantly lower activity than

the vehicle/vehicle group.

Finally, the incidence of diarrhea was highest in the

vehicle/DFP group, with 4 out of 8 rats exhibiting diarrhea

at 2 and 4 h, respectively, after treatment with DFP. There

was no diarrhea in any of the other groups at 4 h and only 1

and 2 rats for the donepezil/DFP and donepezil/vehicle/VFP

groups respectively at 2 h. These results suggest that the

donepezil pretreatments were counteracting the toxic effects

of DFP.
4. Discussion

The acute donepezil experiment established that acute

donepezil treatment could significantly counteract the late-

occurring hypothermic, hypokinetic and diarrhea-inducing

effects of acute DFP in Sprague–Dawley (SD) rats, thereby

confirming the results obtained in the hypercholinergic FSL

rats (Janowsky et al., 2004). However, the early acute

effects of donepezil were substantial, making this acute

strategy problematic unless a centrally active anticholinergic
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was also given, as reported previously (see Janowsky et al.,

2004). Consequently, the effects of a chronic donepezil

treatment regimen were evaluated.

The results suggest that chronic donepezil treatment,

given for 10 days, effectively reduced the hypothermic,

activity-inhibiting, and diarrhea-inducing effects of DFP

without having any effects on its own. Thus, donepezil, a

centrally acting anti-AChE agent used in the treatment of

Alzheimer’s disease, has a parallel effectiveness to phys-

ostigmine, another centrally active anti-AChE agent (Lim et

al., 1988, 1991; Philippens et al., 2000). However, unlike

physostigmine, which can have many unwanted side effects

such as lethargy, nausea, vomiting and diarrhea (Coelho and

Birks, 2001) and which has a relatively short half-life,

donepezil has been used in treating Alzheimer’s patients

with relatively few (11%) side effects (Inglis, 2002; Pratt et

al., 2002) and has a relatively long half-life of up 70 h

(Roman and Rogers, 2004). Furthermore, when donepezil is

given chronically, there is tolerance development to its

hypothermic effects so there are no demonstrable hypo-

thermic effects of donepezil itself at the time of the DFP

challenge (Fig. 2), as was the case with acute treatment

(Janowsky et al., 2004; Fig. 1).

It is important to note that the current study did not use

lethal or supralethal doses of DFP. Thus, it is not certain that

pretreatment with donepezil can prevent death, as does

physostigmine (Philippens et al., 2000). However, it is

likely that death arising from AChE inhibitor poisoning, like

hypothermia and hypoactivity, involves the same choliner-

gic mechanisms. Therefore, one would predict that chronic

donepezil pretreatment would also protect against the lethal

effects of other AChE inhibitors, including nerve agents,

without causing initial toxic additive effects. Of particular

note in the present study, chronically administered donepezil

offered protection against the effects of DFP, even when

there was a relatively long (24 h) interval between the

former and latter injections. This finding suggests that

donepezil may still have an impact on DFP 24 h after its last

dose is given, possibly due its long half-life (Roman and

Rogers, 2004).

This study could have been more complete if brain AChE

values were reported. However, the literature indicates that

we would expect that the peak inhibition of AChE induced

by 2 mg/kg donepezil to be about 40–50% (Geerts et al.,

2005; Kaasinen et al., 2002). Thus, effective protection

against DFP can occur with approximately 50% inhibition

of AChE.

There are some limitations to the practical application

of the above findings. Acutely administered donepezil had

initial cholinergic effects (hypothermia and diarrhea).

These effects can be blocked by low doses of scopolamine

(Janowsky et al., 2004), which can be given initially in a

chronic regimen of donepezil. Alternatively, it is likely that

starting at a low dose and slowly escalating the dose of

donepezil during chronic treatment may induce tolerance

development to its effects and thus avoid potential side
effects (e.g. Chippendale et al., 1972; Overstreet, 1974).

Such an escalating strategy was not used in this experi-

ment because it was considered that a constant dose

strategy would be more easily translated to the human

situation.

There are limitations to abstracting data from animal

studies to effects in humans. These include dosing,

sensitivity and metabolic differences. Also, all AChE

inhibitors do not respond equally to various antagonists.

Thus, the positive result for treatment of one AChE inhibitor

may not apply to others. Nevertheless, we have shown that

donepezil given chronically, can block the hypothermic and

other effects induced by DFP in SD rats without causing

serious side effects of its own. Thus, these treatments have

potential for blocking the central and peripheral toxic effects

of nerve agents. Whether other agents used to treat

Alzheimer’s disease have similar prophylactic effects must

be properly tested.
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